Rhodium/Chiral Diene-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Arylmethylene Cyanoacetates

LETTERS 2008 Vol. 10, No. 4 589–592

ORGANIC

Sebastian Sörgel, Norihito Tokunaga, Keigo Sasaki, Kazuhiro Okamoto, and Tamio Hayashi*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

thayashi@kuchem.kyoto-u.ac.jp

Received November 29, 2007

ABSTRACT

Asymmetric 1,4-addition of arylboronic acids to (E)-methyl 2-cyano-3-arylpropenoates proceeded in the presence of a rhodium catalyst (3 mol %) coordinated with a chiral diene ligand, (R,R)-Ph-bod*, to give high yields of the corresponding methyl 3,3-diaryl-2-cyanopropanoates with high enantioselectivity (up to 99% ee). This catalytic asymmetric transformation was applied to the asymmetric synthesis of (R)-tolterodine.

Rhodium-catalyzed asymmetric 1,4-addition of organoboron reagents has rapidly developed into a powerful tool for the stereoselective formation of carbon–carbon bonds.^{1,2} Aryl and alkenyl groups have been successfully introduced into electron-deficient olefins with high enantioselectivity by this rhodium catalysis.³ One of the most exciting advances in the transition-metal-catalyzed asymmetric reactions is discovery of chiral diene ligands,^{4–7} which have been demonstrated to be highly effective especially in rhodium-catalyzed aryl transfer reactions. The chiral diene–rhodium complexes displayed catalytic activity and enantioselectivity higher than that of chiral phosphine complexes for the aryl transfer to

N-sulfonylimines, α , β -unsaturated ketones, aldehydes, esters, and amides.^{4–7}

The enantioselective construction of stereogenic carbon centers substituted with two aryl groups and one alkyl group is a subject of importance, because this structural motif is often found in pharmaceuticals (e.g., sertraline⁸ and toltero-

⁽¹⁾ For the first example of the rhodium-catalyzed 1,4-addition, see: Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics **1997**, *16*, 4229.

⁽²⁾ For reviews, see: (a) Miyaura, N. In Organoboranes in Syntheses;
Ramachandran, P. V., Brown, H. C., Eds.; ACS Symposium Series 783;
American Chemical Society: Washington, 2001; Chapter 7, pp 94–107.
(b) Hayashi, T. Synlett 2001, 879. (c) Bolm, C.; Hildebrand, J. P.; Muñiz,
K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284. (d) Fagnou, K.;
Lautens, M. Chem. Rev. 2003, 103, 169. (e) Hayashi, T.; Yamasaki, K.
Chem. Rev. 2003, 103, 2829. (f) T. Hayashi Bull. Chem. Soc. Jpn. 2004, 77, 13. (g) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007, 1279.

⁽³⁾ For selected examples, see: (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. **1998**, 120, 5579. (b) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara. M. J. Am. Chem. Soc. **2002**, 124, 5052.

^{(4) (}a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508. (b) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (c) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307. (d) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503. (e) Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. Tetrahedron: Asymmetry 2005, 16, 1673. (f) Shintani, R.; Kimura, T.; Hayashi, T. Chem. Commun. 2005, 3213. (g) Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (h) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54. (i) Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 3909. (j) Kina, A.; Ueyama, K.; Hayashi, T. Org. Lett. 2005, 7, 5889. (k) Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8, 341. (1) Nishimura, T.; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979. (m) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628. (n) Berthon-Gelloz, G.; Hayashi, T. J. Org. Chem. 2006, 71, 8957. (o) Tokunaga, N.; Hayashi, T. Adv. Synth. Catal. 2007, 349, 513. (p) (b) Iohanag, F., Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 4937. (q) Nakao, Y.; Chen, J.; Imanaka, H.; Hiyama, T.; Ichikawa, Y.; Duan, W.-L.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 9137. (r) Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 7277. (s) Shintani, R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao, Y.; Hiyama, T. Org. Lett. 2007, 9, 4643. (t) Duan, W.-L.; Imazaki, Y.; Shintani, R.; Hayashi, T. Tetrahedron 2007, 63, 8529.

dine⁹) and natural products (e.g., podophyllotoxin¹⁰). Their asymmetric synthesis has been reported by the chiral diene/ rhodium-catalyzed asymmetric 1,4-addition of arylboronic acids to β -aryl-substituted α , β -unsaturated aldehydes and esters,^{4h,5c,d} which gave the corresponding β , β -diaryl-substituted products in 90–93% ee^{11,12} (Scheme 1). Herein

we wish to report that arylmethylene cyanoacetates **1** are suitable substrates for the rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids **2**, which gave the corresponding 3,3-diaryl-2-cyanopropanoates **3** in up to 99% ee. This methodology was used for the asymmetric synthesis of (R)-tolterodine, an important urological drug.⁹

A rhodium complex coordinated with chiral diene ligand (R,R)-Ph-bod*,^{4c,e} which is a C_2 -symmetric bicyclic diene bearing two phenyl groups on the double bonds, was found to be highly catalytically active and enantioselective for the addition of phenylboronic acid (**2m**) to 4-methoxyphenylmethylene cyanoacetate (**1a**) (entry 1 in Table 1). Thus, the reaction was completed in 1 h at 20 °C in the presence of 3 mol % of the rhodium catalyst to give 99% yield of 3,3-

(7) One of the reviewers kindly suggested that the following report should be cited as an early example of the chiral diene ligand: Sato, Y.; Takimoto, M.; Mori, M. *Tetrahedron Lett.* **1996**, *37*, 887.

(8) McRae, A. L.; Brady, K. T. Expert Opin. Pharmacother. 2001, 2, 883.

(9) (a) Hills, C. J.; Winter, S. A.; Balfour, J. A. Drugs 1998, 55, 813.
(b) Wefer, J.; Truss, M. C.; Jonas, U. World J. Urol. 2001, 19, 312. (c) Rovner, E. S.; Wein, A. J. Eur. Urol. 2002, 41, 6.

(10) Gordaliza, M.; García, P. A.; Miguel del Corral, J. M.; Castro, M. A.; Gómez-Zurita, M. A. *Toxicon* **2004**, *44*, 441.

(11) Higher enantioselectivity (99% ee) has been reported in the reaction of ArZnCl/ClSiMe₃ with 3-arylpropenals calyzed by a rhodium-binap complex: Tokunaga, N.; Hayashi, T. *Tetrahedron: Asymmetry* **2006**, *17*, 607.

(12) The catalytic asymmetric synthesis of β , β -diaryl-substituted carbonyl compounds has been also reported by use of chiral phosphine-palladium catalysts: (a) Nishikata, T.; Yamamoto, Y.; Gridnev, I. D.; Miyaura, N. *Organometallics* **2005**, *24*, 5025. (b) Nishikata, T.; Yamamoto, Y.; Miyaura, N. *Tetrahedron Lett.* **2007**, *48*, 4007.

 Table 1.
 Rhodium-Catalyzed Asymmetric 1,4-Addition of

 Phenylboronic Acid (2m) to Arylmethylene Cyanoacetate 1a

 a Isolated yield of a 1:1 mixture of diastereomers. b Determined after the deesterification giving **4am**. c 60% **1a** recovered.

diayl-2-cyanopropanoate **3am**. Its enantiomeric purity was determined to be 99% (*R*) by HPLC analysis (Chiralcel OD-H) of 3,3-diarylpropanenitrile **4am**, which is readily obtained in a high yield by decarbomethoxylation of **3am**. Other rhodium/diene complexes, where the dienes are (*R*,*R*)-Bn-bod*^{4c,e} and Carreira's (*S*,*S*)-diene,⁵ were as catalytically active as the Rh/(*R*,*R*)-Ph-bod*, but the enantioselectivity was lower (entries 2 and 3). Rhodium/phosphine complexes were much less catalytically active. For example, (*R*)-binap¹³ catalyst gave **3am** in 33% yield under otherwise the same reaction conditions (entry 4).

As illustrated in Table 2, the present catalytic asymmetric 1,4-addition is applicable to a broad range of arylboronic acids and arylmethylene cyanoacetates. The 1,4-addition proceeded in high yield (>90%) with excellent enantio-selectivity (96–99% ee) for all of the substrate combinations we examined. Arylmethylene cyanoacetates substituted with a methoxy group at the 4-, 3-, and 2-positions on the phenyl are all good substrates, giving the corresponding arylation products **3** with over 96% ee in the reaction with phenyl-, 4- or 3-methylphenyl-, and 4-bromophenyl boronic acids. The enantioselectivities are also very high for arylmethylene cyanoacetates where the aryl groups are 2-methylphenyl, 2-naphthyl, and 4-chlorophenyl.

The presence of both cyano and ester groups at the α -position of the reaction substrates is essential for the high reactivity and enantioselectivity in the present reaction, which is demonstrated by the results summarized in Table 3. Arylmethylene malononitrile **5a** and malonate **5b**, which are

^{(5) (}a) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. **2004**, *126*, 1628. (b) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. **2004**, *6*, 3873. (c) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. **2005**, *127*, 10850. (d) Paquin, J.-F.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M. Org. Lett. **2005**, 7, 3821. (e) Fessard, T. C.; Andrews, S. P.; Motoyoshi, H.: Carreira, E. M. Angew. Chem., Int. Ed. **2007**, *46*, 9331.

^{(6) (}a) Läng, F.; Breher, F.; Stein, D.; Grützmacher, H. Organometallics **2005**, *24*, 2997. (b) Grundl, M. A.; Kennedy-Smith, J. J.; Trauner, D. Organometallics **2005**, *24*, 2831. (c) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-C. J. Am. Chem. Soc. **2007**, *129*, 5336. (d) Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Adv. Synth. Catal. **2007**, *349*, 2331.

Table 2. Asymmetric 1,4-Addition of Arylboronic Acids **2** to Arylmethylene Cyanoacetates **1** Catalyzed by Rh/(R,R)-Ph-bod*

Ar ¹	CO ₂ Me	12 $IOU (00 mol 0/)$	→ Ar' 丫) CN	O₂Me				
entry	Ar^1	Ar^2	yield ^{a} (%)	$\mathrm{e}\mathrm{e}^{b}\left(\% ight)$				
1	$4\text{-MeOC}_{6}\text{H}_{4}\left(\mathbf{1a}\right)$	Ph (2m)	99 (3am)	99 (R)				
2	$3-MeOC_{6}H_{4}\left(\mathbf{1b}\right)$	Ph (2m)	99 (3bm)	98(R)				
3	$2\text{-MeOC}_{6}H_{4}\left(\mathbf{1c}\right)$	Ph (2m)	94 (3cm)	99(R)				
4	$2\text{-MeC}_{6}H_{4}\left(\mathbf{1d}\right)$	Ph (2m)	92 (3dm)	96(R)				
5	2-naphthyl (1e)	Ph (2m)	91 (3em)	98(R)				
6	$4\text{-MeOC}_{6}\text{H}_{4}\left(\mathbf{1a}\right)$	$4\text{-}MeC_{6}H_{4}\left(2n\right)$	96 (3an)	97(R)				
7^c	$4\text{-MeOC}_{6}H_{4}\left(\mathbf{1a}\right)$	$3\text{-}MeC_{6}H_{4}\left(\mathbf{2o}\right)$	95 (3ao)	96(S)				
8	$4\text{-MeOC}_{6}H_{4}\left(\mathbf{1a}\right)$	$4\text{-BrC}_{6}\text{H}_{4}\left(\mathbf{2p}\right)$	92 (3ap)	98(S)				
9	Ph (1f)	$4\text{-MeC}_{6}\text{H}_{4}\left(\mathbf{2n}\right)$	95 (3fn)	97(S)				
10	Ph (1f)	$4\text{-}BrC_{6}H_{4}\left(\mathbf{2p}\right)$	96 (3fp)	98(S)				
11	$4\text{-}ClC_{6}H_{4}\left(\boldsymbol{1g}\right)$	$4\text{-}BrC_{6}H_{4}\left(2p\right)$	90 (3gp)	96(S)				
^a Isolated yield of a 1:1 mixture of diastereomers. ^b Determined after								

^{*a*} Isolated yield of a 1:1 mixture of diastereomers. ^{*b*} Determined after the deesterification giving **4**. ^{*c*} The reaction was carried out at 30 °C.

substituted with two nitriles and esters, respectively, in place of the one-each combination, are much less reactive than the cyanoacetate **1a**, giving the corresponding phenylation products in only about 10% yield (entries 2 and 3). The 1,4addition of phenylboronic acid took place readily for the olefinic substrates **5c** and **5d** bearing either a single cyano or ester functionality (entries 4 and 5), but the enantioselectivity was much lower than that observed for the cyanoacetate **1a**. Thus, the combination of a cyano and an ester group realizes both high yield and high enantioselectivity.

The present asymmetric arylation catalyzed by a (R,R)-Ph-bod*/rhodium complex was applied to the synthesis of (R)-tolterodine (7).¹⁴ Scheme 2 illustrates the reaction scheme

Table 3. Effects of Electron-Withdrawing Substituents on the Rhodium-Catalyzed Asymmetric Addition

MeO-	1a, 5a-d	R ¹ + PhB(Oł (1.5 equ 2m	(3 mc (<i>R,R</i>) (3.3 (3.3 (3.3 (3.3 (3.3 (1)) (3.3 (1)) (1)) (1)) (1)) (1)) (1)) (1)) (1)	(C ₂ H ₄) ₂] ₂ ol % Rh) -Ph-bod* mol %) 20 mol %) equiv to B) , 20 °C, 1 h	MeO 3am, 6	$\frac{Ph}{R^2} R^1$
entry	substrate	\mathbb{R}^1	\mathbb{R}^2	product	yield ^a (%)	$\mathrm{e}\mathrm{e}^{b}\left(\% ight)$
1	1a	$\rm CO_2Me$	CN	3am	99	$99^{c}(R)$
2	5a	CN	CN	6a	9^d	n.d.
3	5b	$\mathrm{CO}_2\mathrm{Me}$	$\mathrm{CO}_2\mathrm{Me}$	6b	11^d	n.d.
4	5c	CN	Н	6c	74	52(R)
5	5d	$\mathrm{CO}_2\mathrm{Me}$	н	6d	99	57 (R)

^{*a*} Isolated yield. ^{*b*} Determined by HPLC on a Chiralcel OD-H column with hexane/2-propanol (4:1). ^{*c*} Determined after the deesterification giving **4am** (**6c**). ^{*d*} Determined by ¹H NMR.

that involves, as a key step, the asymmetric addition of phenylboronic acid to a methylene cyanoacetate bearing a protected 2-hydroxy-5-methylphenyl group. The phenolic hydroxyl group was protected by either benzyl (Bn) or methoxymethyl (MOM). Both of the two substrates **8a** and **8b** were readily accessible in few steps and in high yields starting from inexpensive 4-methylphenol.¹⁵

The rhodium-catalyzed asymmetric 1,4-addition of phenylboronic acid proceeded smoothly at 30 °C with high enantioselectivity for both 8a and 8b using the chiral diene ligand, (R,R)-Ph-bod*, to give the corresponding phenylation products **9a** and **9b** in 97% and 96% yields, respectively. Removal of the carbomethoxy group by treatment with NaCN and LiI in DMF gave high yields of nitriles 10a and 10b, both of which are 98% enantiomerically pure. The remaining synthesis was completed in a three-step sequence. The cyano group in nitriles 10 was successfully reduced to the corresponding aldehydes 11, and subsequent reductive amination with diisopropylamine and sodium triacetoxyborohydride¹⁶ gave high yields of the protected tolterodine precursors 12. Deprotection, applying hydrogenolysis for 12a (Bn) or acidic hydrolysis for 12b (MOM), resulted in smooth formation of (R)-tolterodine (7) in a quantitative yield. The R configuration was confirmed by comparison of the optical rotations, $[\alpha]^{20}_{D}$ +24 (c 0.33, MeOH) for 7 from the Bn route

⁽¹⁴⁾ Rhodium-catalyzed asymmetric 1,4-addition to a coumarin derivative has been applied to the asymmetric synthesis of (*R*)-tolterodine: Chen, G.; Tokunaga, N.; Hayashi, T. *Org. Lett.* **2005**, *7*, 2285.

⁽¹⁵⁾ For details on the synthesis of $\mathbf{8a}$ and $\mathbf{8b}$, see Supporting Information.

⁽¹⁶⁾ Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. **1996**, 61, 3849.

and $[\alpha]^{20}_{\rm D}$ +22 (*c* 0.32, MeOH) for **7** from the MOM route, with that reported for (*S*)-tolterodine { $[\alpha]^{20}_{\rm D}$ -23.0 (*c* 1.5, MeOH)}.¹⁷ Thus, using our new methodology as a key step, (*R*)-tolterodine was synthesized through a five-step sequence from cyanoacetate **8a** in an overall yield of 61%.

In summary, catalytic asymmetric construction of diarylmethine stereogenic centers was realized by the rhodiumcatalyzed asymmetric 1,4-addition of arylboronic acids to arylmethylene cyanoacetates. The reaction proceeded with high enantioselectivity (96–99% ee) in high yields (>90%) by use of 3 mol % of a chiral diene–rhodium catalyst.

Acknowledgment. Support of this work by the Japanese Society for the Promotion of Science (JSPS fellowship for S.S.) is gratefully acknowledged.

Supporting Information Available: Detailed description of representative experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL702879U

⁽¹⁷⁾ Piccolo, O.; Ulgheri, F.; Marchetti, M. WO Patent 2005005356, 2005.